中图分类号:O346.1
文献标识码:A
收稿日期:2017-12-11
接受日期:2017-12-11
网络出版日期:2018-04-17
版权声明:2018 《力学学报》编辑部 《力学学报》编辑部 所有
基金资助:
作者简介:
作者简介:陈学军,副教授,主要研究方向:涂层/薄膜力学. E-mail:chenxuejun@ustb.edu.cn
展开
摘要
边裂(边缘开裂)是涂层热致损伤的主要模式之一. 边缘裂纹穿透涂层后,常导致界面脱粘从而驱使涂层与基体剥离,最终丧失对基体的保护作用. 本文以热应力强度因子表征边缘裂纹的扩展驱动力,研究筒壁涂层在热对流作用下的边裂行为. 首先,利用拉普拉斯变换法,得到了瞬态温度场及热应力场的封闭解. 其次,运用Fett等的三参数法确定了筒壁涂层边缘裂纹的权函数. 最后,基于叠加原理和权函数方法计算了边缘裂纹的热应力强度因子. 探讨了无量纲时间、边缘裂纹深度、基体/涂层厚度比、热对流强度等参数对热应力强度因子的影响规律. 结果表明:热应力强度因子的峰值既非发生在热载荷初始时刻,也非发生在热稳态时刻,而出现在时间历程的中间时刻;增大热对流强度不仅可提高热应力强度因子的峰值,而且使峰值提前出现;其他条件相同时,热应力强度因子随着边缘裂纹长度的增大而降低;增大涂层厚度或减小基体厚度可增强涂层抵抗瞬态热载荷的能力.
关键词:
Abstract
Edge cracking is one of major damage modes for coatings subjected to thermal transients. After penetrating across coating thickness, edge cracks usually cause interfacial decohesion and hence result in the detachment of coating from substrate, which leads to the ultimate loss of the protective effect on the substrate. The edge cracking behavior due to thermal convection is studied in this paper for a coated hollow cylinder, where the thermal stress intensity factor is used to characterize the crack driving force. Firstly, by using the Laplace transform technique, closed-form solutions are obtained for the transient temperature as well as thermal stresses. Secondly, the weight function for an edge crack in a coated hollow cylinder is determined by using the three-parameter method proposed by Fett et al. Finally, the thermal stress intensity factor at the edge crack tip is evaluated based on the principle of superposition and the derived weight function. The dependence of the normalized thermal stress intensity factor is examined on the normalized time, edge crack depth, substrate/coating thickness ratio as well as thermal convection severity. It is shown that the peak thermal stress intensity factor occurs neither at the very beginning nor at the thermal steady state of a thermal transient, but at an intermediate instant. The severer thermal convection generates a peak thermal stress intensity factor not only higher in magnitude but also earlier in time. Should other conditions remain invariant, the thermal stress intensity factor is a decreasing function of the edge crack depth; a thicker coating or a thinner substrate may enhance the thermal transient resistance of a coating.
Keywords:
涂层技术在航空发动机、枪炮身管、核反应堆管道等国防及民用工业的关键热端部件中得到了广泛应用. 由于防护涂层通常具有优良的特殊性能(例如,耐高温、强热障、抗烧蚀等),能有效保护常为失效源发地的构件表面,相关构件的使用寿命得以显著延长. 但随着服役工况要求的不断提高,其寿命问题依然日益突出. 大量实验证据证实[1,2,3,4,5],这是由于防护涂层过早地出现开裂与剥落现象,导致其优良性能难以充分发挥所致. 因此,使涂层在服役期间保持完整并附着于基体以延长其服役期限,是提高上述构件寿命的关键.
实际上,热端部件之防护涂层主要承受由温度梯度引起的热应力. 一旦该应力超过涂层材料的强度极限,涂层表面将萌生边缘裂纹(edge crack). 在周期热载荷的反复作用下,边缘裂纹穿透涂层至界面,导致界面脱粘从而驱使涂层与基体剥离,最终丧失对基体的保护作用[1,2,3,4,5]. 对枪炮身管而言,贯穿涂层后的边缘裂纹即使未能导致涂层剥落,也将作为腐蚀气体的流动通道,造成界面及基体损伤[3,6].
国内外相关文献表明[1,2,3,4,5,6,7,8,9,10]:由于涂层与基体材料的热、物理性能不同,两者间产生失配应变 (mismatch strain),促使涂层开裂与剥落. 因此,人们一方面从改善涂层/基体的失配应变角度出发,设计出多层涂层、功能梯度涂层、纳米结构涂层等[7,8,9]. 另一方面,为增强涂层的剥落抗力,研究者通过增强基体与涂层之间的结合性能来抑制界面裂纹的形成与扩展[10,11].
基于断裂力学的观点,也可通过降低边缘裂纹的热致扩展驱动力来延缓涂层开裂,这就要求计算裂纹尖端的应力强度因子. 此外,为准确预测边缘裂纹的扩展速率,也需确定热应力强度因子的主要影响因素及相关影响规律. 就热载荷而言,考虑其瞬态特征比仅限于热稳态分析更符合实际工况[1,2,3]. 有关涂层边裂纹的应力强度因子的计算方法很多[12,13,14],如积分变换法、有限元法、奇异积分法等. 由于瞬态热应力在涂层厚度方向分布极度不均匀,宜采用权函数方法. 众所周知,权函数法[15,16,17,18,19,20,21,22]是计算应力强度因子的简单、高效方法,它只依赖于裂纹体的几何构形,而与受载情况无关. 一旦已知裂纹体的权函数,可通过简单的线积分确定任意分布应力下的应力强度因子.
本文考虑温度场的瞬态特征,研究筒壁涂层在热对流作用下的边裂行为. 必须指出:在大多数情况下,实际涂层具有多条边缘裂纹. 为简单起见,本文仅考虑单条边缘裂纹,运用Fett等[21,22]的三参数法确定边缘裂纹的权函数,基于叠加原理和权函数法计算其热应力强度因子. 着重探讨无量纲时间、边缘裂纹深度、基体/涂层厚度比、热对流强度等参数对热应力强度因子的影响规律. 研究结果将为筒壁涂层在热环境下的安全服役提供有益建议.
考虑筒壁涂层/基体系统,其几何模型如图1所示,其中#1代表涂层,#2代表基体. 基体圆筒的内、外半 径分别为
设涂层/基体系统的初始温度为
采用柱坐标系,涂层和基体的温度场满足如下热扩散方程[23]
初始条件为
边界条件为
假设涂层/基体界面为理想结合,则温度和热流密度在界面处(
以上各式中,
其中,
式(9), 式(10)中,
根据热--弹性理论,在平面应变情形下,筒壁的环向热应力
其中
以上各式中,
根据权函数理论[26,27],应力强度因子(
其中,
上述表达式通常只需取前四项就具有足够 的精度[21],因此,待定系数
选取以下参考载荷:其一在裂纹口部处作用一对等值、反向的集中力
将式(23)、式(25)、式(26)代入 式(22)和式(24), 可得待定系数[21]
本文研究的涂层/基体材料为碳化硅(SiC)/镍(Ni),对应的无量纲材料参数列于表1. 选取修正八节点二次平面应变单元, 用有限元方法计算参考载荷作用下的应力强度因子
表1 材料参数[
Table 1 Properties of the used material pair[
|
|
|
|
|
|
---|---|---|---|---|---|
.611 | 3.606 | 0.644 | 0.195 | 0.312 | 1.797 |
选择不同的几何参数
无量纲温度
其他条件相同时,基体/涂层厚度比为10时的温度分布曲线比25抬升得更快,这是由于前者基体相对较薄,达到稳定状态所需时间 更短. 还可看出:
图4为无量纲环向热应力
还可看到,热应力沿涂层厚度分布不均,其分布梯度随时间延长而递减. 对
将本文得到的参考应力强度因子与已有文献的对应值进行对比,最大相对误差仅4.64%,证实本文所确定的权函数具有 足够精度[30]. 无量纲应力强度因子
对比应力分布曲线(图4)可知,应力峰值
(1) 边缘裂纹的热应力强度因子峰值既非发生在热载荷初始时刻,也非发生在热稳态时刻,而出现在时间历程的中间时刻. 用热稳态分析来代替热瞬态分析将严重低估瞬态热载荷的破坏程度.
(2) 裂纹长度、基体/涂层厚度比及热流强度显著影响热应力强度因子. 其他条件相同时,随着裂纹长度的增大,筒壁边缘裂纹的热应力强度因子降低;增大涂层厚度或减小基体厚度可增强涂层抵抗瞬态热载荷的能力;增大热流强度不仅使热应力强度因子的峰值增大,而且令峰值的发生时刻提前.
The authors have declared that no competing interests exist.
[1] |
Mixed mode cracking in layered materials .
|
[2] |
Thermal barrier coatings for aircraft engines: History and directions .
|
[3] |
Thermal damage, cracking and rapid erosion of cannon bore coatings .
|
[4] |
热障涂层的破坏机理与寿命预测 .
Failure mechanisms and life prediction of thermal barrier coatings .
|
[5] |
基于圆筒模型的热障涂层安定分析 .
Shakedown analysis of thermal barrier coatings based on cylinder model .
|
[6] |
Degradation failure features of chromium-plated gun barrels with a laser-discrete-quenched substrate .
|
[7] |
Preparation and characterization of ZrB/AlN multilayers by N+ beam assisted deposition .
|
[8] |
Microstructure and properties of in situ nanostructured ceramic matrix composite coating prepared by plasma spraying .
|
[9] |
Q235钢基体表面微晶玻璃功能梯度涂层接触应力的数值模拟 .
Numerical simulation of the contact stress of functionally gradient glass-ceramic coatings on Q235 Ssteel .
|
[10] |
材料力学性能的激光调控 .
Regulation of the mechanical properties of materials by laser .
|
[11] |
Influence of the laser pre-quenched substrate on an electroplated chromium coating/steel substrate .
|
[12] |
Stress intensity factor for an edge crack in two bonded dissimilar materials under convective cooling .
|
[13] |
Effect of surface pre-crack morphology on the fracture of thermal barrier coatings under thermal shock .
|
[14] |
一种基于直接计算高阶奇异积分的断裂力学双边界积分方程分析法 .
A dual boundary integral equation method based on direct evaluation of higher order singular integral for crack problems .
|
[15] |
Determination of weight functions from reference stress intensity factors .
|
[16] |
Direct determination of weight functions from reference loading cases and geometrical conditions .
|
[17] |
Strip yield crack analysis for multiple site damage in infinite and finite panels - A weight function approach .
|
[18] |
Weight functions for multiple edge cracks in a coating .
|
[19] |
半无限板边缘裂纹的权函数解法与评价 .
Weight function methods and assessment for an edge crack in a semi-infinite plate .
|
[20] |
Weight function of stress intensity factor for single radial crack emanating from hollow cylinder .
|
[21] |
Weight functions for edge cracks in thin surface layers .
|
[22] |
Direct adjustment procedure for weight functions of graded materials .
|
[23] |
|
[24] |
|
[25] |
Theory of Thermal Stresses. 1st Ed.
|
[26] |
A novel principle for the computation of stress intensity factors .
|
[27] |
Some remarks on elastic crack-tip stress fields. International
|
[28] |
Thermal shock resistance of functionally graded materials .
|
[29] |
Canonsburg, Release 11.0, ANSYS Inc., Canonsburg,
|
[30] |
Weight functions for multiple axial cracks in a coated hollow cylinder .
|
/
〈 | 〉 |