基于高阶剪切变形理论的四边形求积元板单元及其应用1)
|
申志强, 夏军, 宋殿义, 程盼
|
A QUADRILATERAL QUADRATURE PLATE ELEMENT BASED ON REDDY'S HIGHER-ORDER SHEAR DEFORMATION THEORY AND ITS APPLICATION1)
|
Shen Zhiqiang, Xia Jun, Song Dianyi, Cheng Pan
|
|
表3 矩形板无量纲挠度与弯矩 |
Table 3 The dimensionless deflection and moment of the rectangular plate |
|
b/a | h/a | Method | $\bar{w}$ | $\bar{ Mx }$ | $\bar{ My }$ | 1.5 | 0.01 | QEM 9x9 | 0.142 6 | 0.123 3 | 0.1236 | 1.5 | 0.01 | QEM 11x11 | 0.141 6 | 0.123 3 | 0.1237 | 1.5 | 0.01 | QEM 13x13 | 0.141 6 | 0.123 2 | 0.1237 | 1.5 | 0.01 | Sheikh[15] | 0.141 7 | 0.123 1 | 0.1177 | 1.5 | 0.1 | QEM 9x9 | 0.1478 | 0.1202 | 0.1188 | 1.5 | 0.1 | QEM 11x11 | 0.148 1 | 0.1198 | 0.1187 | 1.5 | 0.1 | QEM 13x13 | 0.148 1 | 0.1198 | 0.1187 | 1.5 | 0.1 | Sheikh[15] | 0.148 1 | 0.1170 | 0.115 8 | 2.0 | 0.01 | QEM 9x9 | 0.1496 | 0.1305 | 0.1246 | 2.0 | 0.01 | QEM 11x11 | 0.1496 | 0.1305 | 0.1246 | 2.0 | 0.01 | QEM 13x13 | 0.1496 | 0.1304 | 0.1246 | 2.0 | 0.01 | Sheikh[15] | 0.1500 | 0.131 4 | 0.115 2 | 2.0 | 0.1 | QEM 9x9 | 0.155 2 | 0.1279 | 0.1201 | 2.0 | 0.1 | QEM 11x11 | 0.155 6 | 0.1273 | 0.1198 | 2.0 | 0.1 | QEM 13x13 | 0.155 8 | 0.1271 | 0.1196 | 2.0 | 0.1 | Sheikh[15] | 0.155 8 | 0.1262 | 0.1136 |
|
|
|