基于高阶剪切变形理论的四边形求积元板单元及其应用1)
|
申志强, 夏军, 宋殿义, 程盼
|
A QUADRILATERAL QUADRATURE PLATE ELEMENT BASED ON REDDY'S HIGHER-ORDER SHEAR DEFORMATION THEORY AND ITS APPLICATION1)
|
Shen Zhiqiang, Xia Jun, Song Dianyi, Cheng Pan
|
|
表5 复合材料层合板无量纲挠度与应力 |
Table 5 The dimensionless deflection and stress of the laminated plate |
|
h/a | Method | $\bar{w}$ | $\bar{\sigma_1}$ | $\bar{\sigma_2}$ | $\bar{\sigma_3}$ | 0.1 | 1/4 model QEM 7 x 7 | 0.7156 | 0.5470 | 0.3893 | 0.0268 | 0.1 | 1/4 model QEM 9 x 9 | 0.7147 | 0.545 6 | 0.388 8 | 0.0268 | 0.1 | 1/4 model QEM 11 x 11 | 0.7147 | 0.545 6 | 0.388 8 | 0.0268 | 0.1 | full model QEM 7 x 7 | 0.7147 | 0.545 5 | 0.3888 | 0.0268 | 0.1 | full model QEM 9 x 9 | 0.7147 | 0.545 6 | 0.3888 | 0.0268 | 0.1 | full model QEM 11 x 11 | 0.7147 | 0.545 6 | 0.3888 | 0.0268 | 0.1 | Reddy[32] | 0.7147 | 0.545 6 | 0.3888 | 0.0268 | 0.1 | 1/4 model Phan[7] | 0.7161 | 0.5427 | 0.385 5 | 0.0266 | 0.1 | 1/4 model Liu[6] | 0.7176 | 0.541 3 | 0.3873 | 0.0266 | 0.01 | 1/4 model QEM 7 x 7 | 0.4343 | 0.5387 | 0.2708 | 0.021 3 | 0.01 | full model QEM 7 x 7 | 0.4349 | 0.5401 | 0.271 1 | 0.021 5 | 0.01 | full model QEM 9 x 9 | 0.4343 | 0.5387 | 0.2708 | 0.021 3 | 0.01 | full model QEM 11 x 11 | 0.4343 | 0.5387 | 0.2708 | 0.021 3 | 0.01 | Reddy[32] | 0.4343 | 0.5387 | 0.2708 | 0.021 3 | 0.01 | 1/4 model Phan[7] | 0.4320 | 0.5301 | 0.2664 | 0.021 1 | 0.01 | 1/4 model Liu[6] | 0.4408 | 0.5349 | 0.2670 | 0.021 1 |
|
|
|