Mechanics in Biological Materials and Systems: Modeling Strategies 生物材料和生物系统中的力学问题

清华大学航天航空学院工程力学系 bhji@mail.tsinghua.edu.cn

中国力学学会青年学术沙龙

2008-10-31

Biological Materials and Systems

- • Biological bulk materials
	- Bone, dentin, shells
- Biological surface materials
	- Adhesion systems of Gecko
	- Water-repellent surface of Lotus leaves, water striders
- •Cell
- •**•** Biomolecules

Focal adhesion

HIV-1 Protease

The Challenges

Stimulation **Response**

- Non-equilibrium
- No conservative laws
- No constitutive laws
- Complex systems
- Multiscales
- Emerging properties

Part I

Mechanics of nano to micro hierarchical biological mateirals – A comparative study among different biological systems including:

- -Bone-like bulk biological materials
- - Surface materials of adhesion system of Gecko
- - Water-repellent surface of Lotus leaves and water strider's legs

Various bulk biological materials

Bone

Conch Abalone

Cowry Diatom Oyster

Nacre

These totally organism-controlled materials are synthesized at ambient temperature and atmospheric conditions.

Teeth

Sanddollar Coral Elk's antler

Table 1. Mechanical properties of shell and its constituents

Table 2. Mechanical properties of bone and its constituents

Currey, 1977; Jackson et al, 1988; Norman et al, 1995; Jaeger and Fratzl, 2000; Menig et al, 2001

Questions:

- 1. How does nature design so hard and tough materials with mineral and protein?
- 2. Can we synthesize these materials in vitro?

Assumptions:

The microstructures of biological materials have been optimized through billions years of evolution for the survival of animals.

Nanostructures of shells

 $2 \mu{\rm m}$

S. Kamat, et al. Nature, 2000 Menig, et al. Acta mater. 2000

Structures and materials are fully integrated in natural organism. The hierarchical organization of the structure at different spatial scale (nano, micro, macro) is inherent into these system.

Nanostructures of bone

Collagen molecules

Elastic properties operate on Voigt upper bound Elastic properties operate on Voigt upper bound

Mineral crystals become insensitive to flaws at nanoscale

Griffith criterion:

$$
\partial (W - \Gamma) / \partial c = 0
$$

$$
\sigma_m^f = \alpha E_m \Psi, \quad \Psi = \sqrt{\frac{\gamma}{E_m h}},
$$

$$
h^* \approx \alpha^2 \, \frac{\gamma E_m}{\sigma_{th}^2}
$$

If
$$
E_m = 100 \text{ GPa}
$$
, $\gamma = 1 \text{ J/m}^2$
 $h^* = 30 \text{ nm}$

structure of biomaterials at the nanoscale to achieve the maximum strength.

Is it universal?

The Young's modulus of various brittle materials can vary, depending on the atomic structure and the purity of the materials.

Typical estimates of the theoretical strength can range between 1% and 10% of the Young's modulus.

If we take γ =1 J/m², E =50-1000GPa, and σ _{th} =(1%–10%)E,

the characteristic length *l_{cr} for flaw tolerance can be estimated to* vary in the range:

l_{cr} ≈2Å–400nm.

Pugno & Ruoff, *Phil. Mag*., 2004 Ballarini et al., *Int. J. Fract*., 2005 Khare et al., PRB, 2007 Gao & Chen, *J. Appl. Mech*., 2005 Ji, *J. Biomech*., 2008

Theoretical model of bone hierarchical structure

Perspectives and Applications

MATERIALS SCIENCE

Bioinspired Structural Materials

Christine Ortiz and Mary C. Boyce

"Materials scientists are seeking to create synthetic materials based on the mechanical design principles found in biological materials such as seashell nacre."

- 1. Bonderer et al., 2008, "Bioinspired design and assembly of platelet reinforced polymer films", Science 319, 1071
- *2. C. Ortiz and M. C. Boyce, 2008, "Bioinspired structural materials", Science 319, 1054*
- *3. Currey, J. D., 2005, "Materials science - Hierarchies in biomineral structures", Science 309, 253*
- *4. Mayer, G., 2006, "Rigid biological systems as models for synthetic composites", Science 309, 1144*

Biological Surface structures Biological Surface structures

Hierarchical adhesion structure of Gecko Hierarchical adhesion structure of Gecko

Fracture/JKR models for adhesive Fracture/JKR models for adhesive contact

H. Gao, B. Ji, et al., 2004, MCB 1, 37 Buehler et al., 2005, Modelling Simul. Mater. Sci. Eng. 14 (2006) 799

Energy dissipation mechanism Energy dissipation mechanism

H. Gao, B. Ji, et al., 2004, MCB 1, 37

Hierarchical design

Water-Repellent Plant Leaves

Barthlott and Neinhuis, Planta , 1997; Barthlott and Neinhuis, *Annals of Botany,* 1997

Water-Repellent Insects

Water strider

Microsetae

Scale bar 20μ^m

Nanoscale grooved structures

Scale bar 200nm

Jiang, Nature 2005

A theoretical model for hierarchical biological surface structure for low adhesion

Summary

- • It seems that Nature use similar strategies, i.e., with hierarchical design from nanoscale, to optimize or control different material properties.
- • At the nanoscale, the structure is not sensitive to flaws, achieving maximum strength of the materials.
- • Hierarchical structures are designed for the toughness, energy dissipation and robustness.
- • Bio- is the nanotechnology by nature. Biological materials achieve these superior properties through billions years of evolution by adapting their living environment.
- • The chemistry and structure are simultaneously used. The geometry of the microstructure is also crucial.
- •Biomimicking is a good way for designing man made novel materials.

"Smart" biological materials

1. Bone is capable of adapting in response to mechanical stimulus

2. Osteocyte is the mechanosensor in bone being able to sense and respond to load-induced strains and to translate this information to cells at the bone surface.

3. The loss of these cells from our bones is associated with the human ageing process.

Modeling of cell adhesion: from molecular level Part II

The growth and instability of adhesion cluster

Background

细胞黏附与疾病 诸如:血栓形成,动脉粥样硬 化,肿瘤的侵润和转移…

细胞黏附与生物机制

诸如:细胞的分化、运动、凝血 机制、病原体侵入、免疫应答…

A time to experiment, and a time to ${\sf theorize}$ (Bershadsky et al., 2006)

- Cell Movement Is Guided by the Rigidity of the Substrate (Engler et al., 2006, Cell 126, 677; Lo et al. 2000. Biophy. J 79, 144; Reinhart-King et al. 2008. Biophys. J, in press)
- Force induced growth of focal adhesion (Riveline et al., 2001. J. Cell Biol. 153, 1175; Kaverina et al., 2002, J. Cell Sci. 115, 2283.)
- Cell reorientation under cyclic stretching (Wang et al., 2001, J. Biomech. 34, 1563; Kaunas et al. 2005. PNAS 102, 15895)
- Cell rheology (Deng et al. 2006. Nature Materials 5, 636; Chowdhury et al. 2008, Biophys. J., in press)

Force induced Force induced growth of focal growth of focal adhesion adhesion

Cell reorientation under cyclic strain

Representative phase contrast microphotographs of endothelial cells: unstretched (A), after 3 h of simple elongation (B), and after 3 h of pure uniaxial stretching (C).

Wang et al., 2001, J. Biomech. 34, 1563

Cell reorientation under cyclic strain

Kaunas et al. 2005. PNAS 102, 15895

Frequency-dependent Cell reorientation under cyclic strain

Exponential decrease of the order parameter S from a random orientation to a saturation value at different stretching frequencies

Biphasic characteristics of dynamic cell reorientation

Jungbauer et al. 2008. Biophys. J 95, 3470

Focal adhesion

A microscopic model A microscopic model

Kong, Ji and Dai, Biophys. J. 2008, 95, 4034

Modeling of adhesion cluster

 $\varepsilon = \varepsilon_0 \left| \sin(\pi \omega t) \right|$ External cyclic force

Stress fiber

$$
F = k_s \Delta l_s + \mu \frac{\partial \Delta l_s}{\partial t}
$$

Displacement of substrate

 $s = l\varepsilon(\cos^2\theta - v\sin^2\theta)$

Bond force

b $f = k_{b} \Delta L$ Δ

Modeling of adhesion cluster (cont.)

Dynamics of adhesion bonds

Threshold value of external strain

Dartsch and Hammerle, 1986, Eur. J. Cell Biol. 41: 339–346.

Neidlinger-Wilke et al., 2005, J. Orthop. Res. 12:70–78.

应变临界值是成键与解离过程竞争的结果

Kong, Ji and Dai, Biophys. J. 2008, 95 4034

Effect of loading frequency

9

成键时间VS接触时间

- 1. 对黏附分子反应的影响
- 2. 对应力纤维的影响

Kong et al., 2008; Besser and Schwarz, 2007

Optimum orientation

细胞趋向外力最小的方向。

Kong, Ji and Dai, Biophys. J. 2008, 95 4034; Wang et al., 2001, J. Biomech. 34, 1563

Growth mechanism

A unified model

黏附斑生长 → 黏附斑破坏 → 细胞尺度取向变化

黏附斑生长 → 黏附斑破坏 → 细胞尺度取向变化 A unified model (cont.)

Kong, Ji and Dai, Biophys. J. 2008, 95, 4034

Summary

- With the microscopic model, we identified three force zone for different cell behaviors.
- Focal Adhesion grows due to the decrease of local chemical potential under external force.
- In addition to the biochemical aspects, active reorientation of the cell/stress fiber may represent a mechanism by which cells reduce the increase in intracellular tension generated by cyclic stretching.

Perspectives & Strategies

Man-made advanced materials

Understanding the mechanisms of the vital diseases and malfunctions

HIV/ADIS

Cancer

Osteoporosis/bone loss

Supports :

This work is supported by the National Natural Science Foundation of China through Grant No. 10442002, 10502031, 10628205, 10732050, and 973 Grant No. 2004CB619304.