-
摘要:高雷诺数壁湍流(high Reynolds number wall-bounded turbulence,HRNWT)是目前湍流科学研究的一个热点也是一个难点,对其现象、规律及机制的认知不足,理论体系远未建立而且研究手段受到各种限制.本文基于对HRNWT主要研究手段的介绍,针对HRNWT中的湍流统计量、超大尺度结构(very large scale motions,VLSMs)的尺度和形态以及起源和影响及其与颗粒的相互作用,总结了HRNWT的研究现状和最新进展,特别梳理了近年来本文作者团队在HRNWT特别是高雷诺数颗粒两相壁湍流方面的研究成果,并对HRNWT的进一步研究给出了建议及展望.Abstract:High Reynolds number wall-bounded turbulence (HRNWT) has been a hotspot and difficult issue in the field of turbulence research in recent years. The understanding of flow phenomena, laws of physics and mechanisms are insufficient and studies on HRNWT are restricted by various deficiencies of research techniques. There is still a long way to go to establish a thorough theoretical framework for HRNWT. Based on the introductions of the leading research techniques, this paper summarizes and reviews the research progresses in statistical characteristics of the HRNWT and very large scale motions (VLSMs) including their morphologies, originations, influences on the turbulent flows, as well as the interactions between turbulence and moving particles in the HRNWT. The contributions of the author's research team on these issues, especially the turbulence-particle interactions are combined. Finally, we highlight the prospects of direction, trends and remaining challenges of further researches.
-
[1] 胡隐樵, 高由禧, 王介, 季国良, 沈志宝, 程麟生, 陈家宜, 李守谦 . 1994. 黑河实验 (HEIFE)的一些研究成果. 高原气象, 13:225-236(Hu Y Q, Gao Y X, Wang J M , et al. 1994. Some achievements in scientific research during HEIFE. Plateau Meteorology, 13:225-236). [2] 纪勇 . 2019. 基于结构系综理论的大气表面层研究. 博士学位论文. 北京大学湍流与复杂系统国家重点实验室, 北京大学. [3] 李存标, 吴介之, 白夜 . 2009. 壁流动中的转捩. 力学进展, 39:480-507(Li C B, Wu J Z, Bai Y . 2009. Transition in wall-bouned flows. Advances in Mechanics, 39:480-507). [4] 林建忠, 朱泽飞, 沈利平 . 1998. 气固两相边界层中固粒与拟序结构相互作用的研究. 上海力学, 4:310-317(Lin J Z, Zhu Z F, Shen L P . 1998. Research on the interaction between the solid particles and the coherent structure in turbulent boundary layer. Shanghai Mechanics, 4:310-317). [5] 林建忠, 林江, 石兴 . 2002. 两相流中柱状固粒对流体湍动特性影响的研究. 应用数学和力学, 23:483-488(Lin J Z, Lin J, Shi X . 2002. Research on the effect of cylinder particles on the turbulent properties in particulate flows. Applied Mathematics and Mechanics, 23:483-488). [6] 许春晓 . 2015. 壁湍流相干结构和减阻控制机理. 力学进展, 45:201504(Xu C X . 2015. Coherent structures and drag-reduction mechanism in wall turbulence. Advances in Mechanics, 45:201504). [7] 徐祥德, 周明煜, 陈家宜, 卞林根, 张光智, 刘辉志, 李诗明, 张宏升, 赵冀俊, 索朗多吉, 王继志 . 2001. 青藏高原地-气过程动力、热力结构综合物理图象. 中国科学: 地球科学, 31:428-440. [8] 郑晓静 . 2017. 大气表面湍流超大/大尺度结构. 中国力学大会2017, 2017年8月13-16日, 北京. [9] 顾海华, 郑晓静 . 2019. 大气表面层粉尘(PM10)输运的超大尺度结构. 中国力学大会2019, 2019年 8月25-28日, 杭州. [10] 王萍, 靳婷, 郑晓静 . 2019a. 壁湍流多相流大涡模拟壁函数改进. 中国力学大会2019, 2019年 8月25-28日, 杭州. [11] 王萍, 柳丽, 郑晓静 . 2019b. 基于沙尘暴期间大气表面层风场的粉尘输运数值模拟. 中国力学大会2019, 2019年8月25-28日, 杭州. [12] 周力行, 廖昌明, 陈涛 . 1994. 强旋气-粒两相湍流的统一二阶矩封闭模型. 工程热物理学报. 15:327-330(Zhou L, Liao C, Chen T . 1994. A unified second-order moment two-phase turbulence model for strongly swirling gas-particle flows. Journal of Engineering Thermophysics, 15:327-330). [13] Adrian R J, Meinhart C D, Tomkins C D. 2000. Vortex organization in the outer region of the turbulent boundary layer. Journal of Fluid Mechanics, 422:1-54. [14] Ahn J, Lee J H, Lee J, Kang J H, Sung H J. 2015. Direct numerical simulation of a 30R long turbulent pipe flow at $Re_ au=3008$. Physics of Fluids, 27:065110. [15] álamo J C, Jimenez J, Zandonade P, Moser R D. 2006. Self-similar vortex clusters in the turbulent logarithmic region. Journal of Fluid Mechanics, 561:329-358. [16] Alfredsson P H, Segalini A, ?rlü R. 2011. A new scaling for the streamwise turbulence intensity in wall-bounded turbulent flows and what it tells us about the "outer" peak. Physics of Fluids, 23:041702. [17] Anderson R S, Haff P K. 1988. Simulation of Eolian Saltation. Science, 241:820-823. [18] Baas A C, Sherman D J. 2005. Formation and behavior of aeolian streamers. Journal of Geophysical Research-Earth Surface, 110:F03011. [19] Baas A C. 2006. Wavelet power spectra of Aeolian sand transport by boundary layer turbulence. Geophysical Research Letters, 33:L05403. [20] Bagchi P, Balachandar S. 2003. Effect of turbulence on the drag and lift of a particle. Physics of Fluids, 15:3496-3513. [21] Bagnold R A. 1941. The physics of blown sand and desert dunes. Nature, 18:167-187. [22] Bailey S C C, Vallikivi M, Hultmark M, Smits A J. 2014. Estimating the value of von Karman's constant in turbulent pipe flow. Journal of Fluid Mechanics, 749:79-98. [23] Balachandar S, Eaton J K. 2010. Turbulent dispersed multiphase flow. Annual Review of Fluid Mechanics, 42:111-133. [24] Balakumar B J, Adrian R J. 2007. Large- and very-large-scale motions in channel and boundary-layer flows. Philos Trans A Math Phys Eng Sci, 365:665-681. [25] Bandyopadhyay P R, Hussain P A K M F. 1984. The coupling between scales in shear flows. Physics of Fluids, 27:2221-2228. [26] Barenblatt G I, Prostokishin V M. 1993. Scaling laws for fully developed turbulent shear flows. Part 1. Basic hypotheses and analysis. Journal of Fluid Mechanics, 248:513-520. [27] Bernardini M, Pirozzoli S, Orlandi P. 2014. Velocity statistics in turbulent channel flow up to. Journal of Fluid Mechanics, 742:171-191. [28] Blackwelder R F, Kovasznay L S G. 1972. Time scales and correlations in a turbulent boundary layer. Physics of Fluids, 15:1545-1554. [29] Brown G L, Thomas A S W. 1977. Large structure in a turbulent boundary layer. Physics of Fluids, 20:S243-S252. [30] Cantwell B J. 1981. Organized motion in turbulent-flow. Annual Review of Fluid Mechanics, 13:457-515. [31] Caporaloni M, Tampieri F, Trombetti F. 1975. Transfer of particles in nonisotropic air turbulence. Journal of the Atmospheric Sciences, 32:565-568. [32] Carneiro M V, Rasmussen K R, Herrmann H J. 2015. Bursts in discontinuous Aeolian saltation. Scientific Reports, 5:11109. [33] Carper M A, Porte-Agel F. 2004. The role of coherent structures in subfilter-scale dissipation of turbulence measured in the atmospheric surface layer. Journal of Turbulence, 5:040. [34] Castillo L, George W K. 2001. Similarity analysis for turbulent boundary layer with pressure gradient: Outer flow. AIAA Journal, 39:41-47. [35] Chauhan K A. 2007. Study of canonical wall-bounded turbulent flows. [PhD Thesis]. Illinois: Illinois Institute of Technology. [36] Chauhan K A, Nagib H, Monkewitz P. 2007. On the composite logarithmic profile in zero pressure gradient turbulent boundary layers. //45th AIAA Aerospace Sciences Meeting and Exhibit. [37] Chauhan K A, Hutchins N, Monty J, Marusic I. 2013. Structure inclination angles in the convective atmospheric surface layer. Boundary-Layer Meteorology, 147:41-50. [38] Chhabra R P, Agarwal L, Sinha N Kl. 1999. Drag on non-spherical particles: An evaluation of available methods. Powder Technology, 101:288-295. [39] Choi H, Moin P. 2012. Grid-point requirement for large eddy simulation: Chapman's estimation revisited. Physics of Fluids, 24:011702. [40] Cooper D I, Leclerc M Y, Archuleta J, Coulter R, Eichinger W E, Kao C Y J, Nappo C J. 2006. Mass exchange in the stable boundary layer by coherent structures. Agricultural & Forest Meteorology, 136:114-131. [41] Corrsin S, Kistler A L. 1954. Free-stream boundaries of turbulent flows. N.A.C.A. Tech. Note no. 3133.(See also N.A.C.A. Tech. Rep. no.1244, 1955). [42] De Graaff D B, Eaton J K. 2000. Reynolds-number scaling of the flat-plate turbulent boundary layer. Journal of Fluid Mechanics, 422:319-346. [43] Deck S, Renard N, Laraufie R, Weiss P-é. 2014. Large-scale contribution to mean wall shear stress in high-Reynolds-number flat-plate boundary layers up to $Re_ heta=13650$. Journal of Fluid Mechanics, 743:202-248. [44] Deng B, Huang W, Xu C. 2016. Origin of effectiveness degradation in active drag reduction control of turbulent channel flow at $Re_ au=1000$. Journal of Turbulence, 17:758-786. [45] Deng S, Pan C, Wang J J, He G S. 2018. On the spatial organization of hairpin packets in a turbulent boundary layer at low-to-moderate Reynolds number. Journal of Fluid Mechanics, 844:635-668. [46] Dennis D J C. 2015. Coherent structures in wall-bounded turbulence. Anais Da Academia Brasileira De Ciências, 87:513-537. [47] Dixit S A, Ramesh O N. 2018. Streamwise self-similarity and log scaling in turbulent boundary layers. Journal of Fluid Mechanics, 851:R1. [48] Dritselis C D, Vlachos N S. 2008. Numerical study of educed coherent structures in the near-wall region of a particle-laden channel flow. Physics of Fluids, 20:055103. [49] Drobinski P, Carlotti P, Newsom R K, Banta R M, Foster R C, Redelsperger J L. 2004. The structure of the near neutral atmospheric surface layer. Journal of the Atmospheric Sciences, 61:699-714. [50] Dupont S, Bergametti G, Marticorena B, Simoens S. 2013. Modeling saltation intermittency. Journal of Geophysical Research-Atmospheres, 118:7109-7128. [51] Elghobashi S. 1994. On predicting particle-laden turbulent flows. Applied Scientific Research, 52:309-329. [52] Elgobashi S, Balachandar S, Prosperetti A. 2006. An updated classification map of particle-laden turbulent flows. IUTAM Symposium on Computational Approaches to Multiphase Flow, 81:3-10. [53] Falco R E. 1977. Coherent motions in the outer region of turbulent boundary layers. The Physics of Fluids, 20:S124-S132. [54] Fernholz H H, Krause E, Nockemann M, Schober M. 1995. Comparative measurements in the canonical boundary-layer at $Re _{delta 2}leq 6 imes 10^{4}$ on the wall of the German-Dutch Wind Tunnel. Physics of Fluids, 7:1275-1281. [55] Flores O, Jiménez J, álamo J C D. 2007. Vorticity organization in the outer layer of turbulent channels with disturbed walls. Journal of Fluid Mechanics, 591:145-154. [56] Frisch U. 1995. Turbulence. Cambridge: Cambridge University Press. [57] Furuichi N, Terao Y, Wada Y, Tsuji Y. 2018. Further experiments for mean velocity profile of pipe flow at high Reynolds number. Physics of Fluids, 30:7. [58] Ganapathisubramani B, Longmire E K, Marusic I, Pothos S. 2005. Dual-plane PIV technique to determine the complete velocity gradient tensor in a turbulent boundary layer. Experiments In Fluids, 39:222-231. [59] Geiss S, Dreizler A, Stojanovic Z. 2004. Investigation of turbulence modification in a non-reactive two phase flow. Experiments in Fluids, 36:344-354. [60] George W K. 1995. Some new ideas for similarity of turbulent shear flows. Turbulence, Heat and Mass Transfer, 1:13-24. [61] George W K. 2007. Is there a universal log law for turbulent wall-bounded flows? Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365:789-806. [62] Greeley R, Blumberg D G, Williams S H. 1996. Field measurements of the flux and speed of wind-blown sand. Sedimentology, 43:41-52. [63] Gu H, Wang G, Zhu W, Zheng X J. 2019. Gusty wind disturbances and large-scale turbulent structures in the neutral atmospheric surface layer. Science China Physics, Mechanics & Astronomy, 62:114711. [64] Guala M, Hommema S E, Adrian R J. 2006. Large-scale and very-large-scale motions in turbulent pipe flow. Journal of Fluid Mechanics, 554:521-542. [65] Guala M, Metzger M, Mckeon B J. 2011. Interactions within the turbulent boundary layer at high Reynolds number. Journal of Fluid Mechanics, 666:573-604. [66] Hadinoto K, Jones E N, Yurteri C, Curtis J S. 2005. Reynolds number dependence of gas-phase turbulence in gas-particle flows. International Journal of Multiphase Flow, 31:416-434. [67] Hagen G. 1839. Ueber die Bewegung des Wassers in engen cylindrischen R?hren. Annalen der Physik, 122:423-442. [68] Han G, Liu L, Bo T, Zheng X. 2019 a. A predictive model for the streamwise velocity in the near-neutral atmospheric surface layer. Journal of Geophysical Research-Atmospheres, 124:238-251. [69] Han G, Wang G, Zheng X. 2019 b. The applicability of Taylor's hypothesis for estimating the mean streamwise length scales of large-scale structures in the near-neutral atmospheric surface layer. Boundary-Layer Meteorol, 172:215-237. [70] He G, Jin G, Yang Y. 2017. Space-time correlations and dynamic coupling in turbulent flows. Annual Review of Fluid Mechanics, 49:51-70. [71] He G W, Zhang J B. 2006. Elliptic model for space-time correlations in turbulent shear flows. Phys Rev E Stat Nonlin Soft Matter Phys, 73:055303. [72] Head M R, Bandyopadhyay P. 1981. New aspects of turbulent boundary-layer structure. Journal of Fluid Mechanics, 107:297-338. [73] Heisel M, Dasari T, Liu Y, Hong J R, Coletti F, Guala M. 2018. The spatial structure of the logarithmic region in very-high-Reynolds-number rough wall turbulent boundary layers. Journal of Fluid Mechanics, 857:704-747. [74] Helland E, Occelli R, Tadrist L. 2005. Numerical study of cluster and particle rebound effects in a circulating fluidised bed. Chemical Engineering Science, 60:27-40. [75] H?gstr?m U, Hunt J C R, Smedman A S. 2002. Theory and measurements for turbulence spectra and variances in the atmospheric neutral surface layer. Boundary-Layer Meteorology, 103:101-124. [76] Homann H, Jérémie B, Rainer G. 2013. Effect of turbulent fluctuations on the drag and lift forces on a towed sphere and its boundary layer. Journal of Fluid Mechanics, 721:155-179. [77] Hommema S E, Adrian R J. 2003. Packet structure of surface eddies in the atmospheric boundary layer. Boundary-Layer Meteorology, 106:147-170. [78] Horiguchi M, Hayashi T, Adachi A, Onogi S. 2012. Large-scale turbulence structures and their contributions to the momentum flux and turbulence in the near-neutral atmospheric boundary layer observed from a 213 m tall meteorological tower. Boundary-Layer Meteorology, 144:179-198. [79] Hoyas S, Jiménez J. 2006. Scaling of the velocity fluctuations in turbulent channels up to $Re_ au=2003$. Physics of Fluids, 18:011702. [80] Hoyas S, Oberlack M, Kraheberger S, Alcantara-Avila F. 2018. Turbulent channel flow at $Re_ au=10000$// APS Division of Fluid Dynamics Meeting. Nov. 18-20, Atlanta, USA. [81] Hultmark M, Vallikivi M, Bailey S C C, Smits A J. 2012. Turbulent pipe flow at extreme Reynolds numbers. Physical Review Letters, 108:094501. [82] Hultmark M, Vallikivi M, Bailey S C C, Smits A J. 2013. Logarithmic scaling of turbulence in smooth- and rough-wall pipe flow. Journal of Fluid Mechanics, 728:376-395. [83] Hunt J C R, Carlotti P. 2001. Statistical structure at the wall of the high Reynolds number turbulent boundary layer. Flow Turbulence & Combustion, 66:453-475. [84] Hunt J C R, Morrison J F. 2000. Eddy structure in turbulent boundary layers. European Journal of Mechanics, 19:673-694. [85] Hutchins N, Hambleton W T, Marusic I. 2005. Inclined cross-stream stereo particle image velocimetry measurements in turbulent boundary layers. Journal of Fluid Mechanics, 541:21-54. [86] Hutchins N, Marusic I. 2007 a. Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. Journal of Fluid Mechanics, 579:1-28. [87] Hutchins N, Marusic I. 2007 b. Large-scale influences in near-wall turbulence. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365:647-664. [88] Hutchins N, Marusic I, Monty J, Klewicki J. 2012. Towards Reconciling the Large-Scale Structure of Turbulent Boundary Layers in the Atmosphere and Laboratory. Boundary-Layer Meteorology, 145:273-306. [89] Hutchins N, Monty J P, Ganapathisubramani B, Ng H C H, Marusic I. 2011. Three-dimensional conditional structure of a high-Reynolds-number turbulent boundary layer. Journal of Fluid Mechanics, 673:255-285. [90] Inoue M, Mathis R, Marusic I, Pullin D I. 2012. Inner-layer intensities for the flat-plate turbulent boundary layer combining a predictive wall-model with large-eddy simulations. Physics of Fluids, 24:075102. [91] Jackson D W T. 1996. Potential inertial effects in aeolian sand transport: Preliminary results. Sedimentary Geology, 106:193-201. [92] Jackson N L, Sherman D J, Hesp P A, Klein A H F, Ballasteros Jr F, Nordstrom K F. 2006. Small-scale spatial variations in aeolian sediment transport on a fine-sand beach. Journal of Coastal Research, 39:379-383. [93] Jacob C, Anderson W. 2016. Conditionally averaged large-scale motions in the neutral atmospheric boundary layer: Insights for aeolian processes. Boundary-Layer Meteorology, 162:1-21. [94] Kaftori D, Hetsroni G, Banerjee S. 1995. Particle behavior in the turbulent boundary layer. II. Velocity and distribution profiles. Physics of Fluids, 7:1107-1121. [95] Kaimal J C, Wyngaard J C. 1989. The Kansas and Minnesota experiments. Boundary-Layer Meteorology, 50:31-47. [96] Kaye B H, Boardman R P. 1962. Cluster formation in dilute suspensions// Proceedings of Symposium on the Interaction between Fluids and Particles, Institution of Chemical Engineers, London. [97] Kim J, Balachandar S. 2012. Mean and fluctuating components of drag and lift forces on an isolated finite-sized particle in turbulence. Theoretical and Computational Fluid Dynamics, 26:185-204. [98] Kim J, Moin P, Moser R. 1987. Turbulence statistics in fully developed channel flow at low Reynolds number. Journal of Fluid Mechanics, 177:133-166. [99] Kim K C, Adrian R J. 1999. Very large-scale motion in the outer layer. Physics of Fluids, 11:417-422. [100] Klewicki J C. 2010. Reynolds number dependence, scaling, and dynamics of turbulent boundary layers. Journal of Fluids Engineering-Transactions of the Asme, 132:094001. [101] Klewicki J C, Fife P, Wei T. 2009. On the logarithmic mean profile. Journal of Fluid Mechanics, 638:73-93. [102] Kline S J, Reynolds W C, Schraub F A, Runstadler P W. 1967. The structure of turbulent boundary layers. Journal of Fluid Mechanics, 30:741-773. [103] Kovasznay L S G, Kibens V, Blackwelder R F. 1970. Large-scale motion in the intermittent region of a turbulent boundary layer. Journal of Fluid Mechanics, 41:283-325. [104] Krogstad P ?, Antonia R A. 1994. Structure of turbulent boundary layers on smooth and rough walls. Journal of Fluid Mechanics, 277:1-21. [105] Kulick J D, Fessler J R, Eaton J K. 1994. Particle response and turbulence modification in fully developed channel flow. Journal of Fluid Mechanics, 277:109-134. [106] Kunkel G J, Marusic I. 2006. Study of the near-wall-turbulent region of the high-Reynolds-number boundary layer using an atmospheric flow. Journal of Fluid Mechanics, 548:375-402. [107] Kussin J, Sommerfeld M. 2002. Experimental studies on particle behaviour and turbulence modification in horizontal channel flow with different wall roughness. Experiments in Fluids, 33:143-159. [108] Lee J, Sung H. 2011. Very-large-scale motions in a turbulent boundary layer. Journal of Fluid Mechanics, 673:80-120. [109] Lee M, Moser R D. 2015. Direct numerical simulation of turbulent channel flow up to $Re_ ausim 5200$. Journal of Fluid Mechanics, 774:395-415. [110] Lee M, Ulerich R, Malaya N, Moser R D. 2014. Experiences from leadership computing in simulations of turbulent fluid flows. Computing in Science & Engineering, 16:24-31. [111] Lee J, Lee C. 2015. Modification of particle-laden near-wall turbulence: Effect of Stokes number. Physics of Fluids, 27:023303. [112] Li D, Wei A, Luo K. 2016. Direct numerical simulation of a particle-laden flow in a flat plate boundary layer. International Journal of Multiphase Flow, 79:124-143. [113] Li Y, Mclaughlin J B, Kontomaris K. 2001. Numerical simulation of particle-laden turbulent channel flow. Physics of Fluids, 13:2957-2967. [114] Li J, Wang H, Liu Z, Chen S, Zheng C. 2012. An experimental study on turbulence modification in the near-wall boundary layer of a dilute gas-particle channel flow. Experiments in Fluids, 53:1385-1403. [115] Liljegren L M, Vlachos N S. 1990. Laser velocimetry measurements in a horizontal gas-solid pipe flow. Experiments in Fluids, 9:205-212. [116] Liu H, Bo T, Liang Y. 2017 a. The variation of large-scale structure inclination angles in high Reynolds number atmospheric surface layers. Physics of Fluids, 29:035104. [117] Liu H, Wang G, Zheng X. 2017 b. Spatial length scales of large-scale structures in atmospheric surface layers. Physical Review Fluids, 2:064606. [118] Liu H, Wang G, Zheng X. 2019. Amplitude modulation between multi-scale turbulent motions in high-Reynolds-number atmospheric surface layers. Journal of Fluid Mechanics, 861:585-607. [119] Liu Z, Adrian R J, Hanratty T J. 2001. Large-scale modes of turbulent channel flow: Transport and structure. Journal of Fluid Mechanics, 448:53-80. [120] Ljus C, Johansson B, Almstedt A E. 2002. Turbulence modification by particles in a horizontal pipe flow. International Journal of Multiphase Flow, 28:1075-1090. [121] Lozano-Durán A, Jiménez J. 2014. Effect of the computational domain on direct simulations of turbulent channels up to $Re_ au= 4200$. Physics of Fluids, 26:011702. [122] Lucci F, Ferrante A, Elghobashi S. 2011. Is Stokes number an appropriate indicator for turbulence modulation by particles of taylor-length-scale size? Physics of Fluids, 23:025101. [123] Luo K, Hu C, Wu F. 2017. Direct numerical simulation of turbulent boundary layer with fully resolved particles at low volume fraction. Physics of Fluids, 29:053301. [124] Luo K, Fan J, Cen K. 2005. Modulations on turbulent characteristics by dispersed particles in gas-solid jets. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 461:3279-3295. [125] Mand? M. 2009. Turbulence modulation by non-spherical particles. [PhD Thesis]. Aalborg: Department of Energy Technology, Aalborg University. [126] Marchioli C, Soldati A. 2002. Mechanisms for particle transfer and segregation in a turbulent boundary layer. Journal of Fluid Mechanics, 468:283-315. [127] Martin R L, Kok J F. 2018. Distinct thresholds for the initiation and cessation of aeolian saltation from field measurements. Journal of Geophysical Research: Earth Surface, 123:1546-1565. [128] Marusic I, Heuer W D C. 2007. Reynolds number invariance of the structure inclination angle in wall turbulence. Physical Review Letters, 99:114504. [129] Marusic I, Hutchins N. 2008. Study of the log-layer structure in wall turbulence over a very large range of Reynolds number. Flow Turbulence & Combustion, 81:115-130. [130] Marusic I, Kunkel G J. 2003. Streamwise turbulence intensity formulation for flat-plate boundary layers. Physics of Fluids, 15:2461-2464. [131] Marusic I, Kunkel G J, Porte-Agel F. 2001. Experimental study of wall boundary conditions for large-eddy simulation. Journal of Fluid Mechanics, 446:309-320. [132] Marusic I, Mathis R, Hutchins N. 2010 a. High Reynolds number effects in wall turbulence. International Journal of Heat and Fluid Flow, 31:418-428. [133] Marusic I, Mathis R, Hutchins N. 2010 b. Predictive model for wall-bounded turbulent flow. Science, 329:193-196. [134] Marusic I, Mathis R, Hutchins N. 2011. A wall-shear stress predictive model. Journal of Physics: Conference Series, 318:012003. [135] Marusic I, McKeon B J, Monkewitz P A, Nagib H M, Smits A J, Sreenivasan K R. 2010 c. Wall-bounded turbulent flows at high Reynolds numbers: Recent advances and key issues. Physics of Fluids, 22:065102. [136] Marusic I, Monty J P, Hultmark M, Smits A J. 2013. On the logarithmic region in wall turbulence. Journal of Fluid Mechanics, 716:R3. [137] Mathis R, Hutchins N, Marusic I. 2009 a. Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers. Journal of Fluid Mechanics, 628:311-337. [138] Mathis R, Hutchins N, Marusic I. 2011 a. A predictive inner-outer model for streamwise turbulence statistics in wall-bounded flows. Journal of Fluid Mechanics, 681:537-566. [139] Mathis R, Marusic I, Chernyshenko S I, Hutchins N. 2013. Estimating wall-shear-stress fluctuations given an outer region input. Journal of Fluid Mechanics, 715:163-180. [140] Mathis R, Marusic I, Hutchins N, Sreenivasan K R. 2011 b. The relationship between the velocity skewness and the amplitude modulation of the small scale by the large scale in turbulent boundary layers. Physics of Fluids, 23:121702. [141] Mathis R, Monty J P, Hutchins N, Marusic I. 2009 b. Comparison of large-scale amplitude modulation in turbulent boundary layers, pipes, and channel flows. Physics of Fluids, 21:111703. [142] McEwan I K, Willetts B B. 1991. Numerical model of the saltation cloud. Aeolian Grain Transport 1. Acta Mechanica (Suppl), 53-66. [143] Mckeon B J, Li J, Jiang W, Morrison J F, Smits A J. 2004. Further observations on the mean velocity distribution in fully developed pipe flow. Journal of Fluid Mechanics, 501:135-147. [144] Mckeon B J, Morrison J F. 2007. Asymptotic scaling in turbulent pipe flow. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365:771-787. [145] McLaughlin J B. 1989. Aerosol particle deposition in numerically simulated channel flow. Physics of Fluids A: Fluid Dynamics, 1:1211-1224. [146] Metzger M M, Klewicki J C. 2001. A comparative study of near-wall turbulence in high and low Reynolds number boundary layers. Physics of Fluids, 13:692-701. [147] Millikan C B. 1938. A critical discussion of turbulent flows in channels and circular tubes//Proceedings of the Fifth International Congress of Applied Mechanics, 386-392. [148] Moin P, Kim J. 1982. Numerical investigation of turbulent channel flow. Journal of Fluid Mechanics, 118:1280-1284. [149] Moin P, Mahesh K. 1998. Direct numerical simulation: A tool in turbulence research. Annual Review of Fluid Mechanics, 30:539-578. [150] Monty J P, Stewart J A, Williams R C, Chong M S. 2007. Large-scale features in turbulent pipe and channel flows. Journal of Fluid Mechanics, 589:147-156. [151] Monty J P. 2005. Developments in smooth wall turbulent duct flows. [PhD Thesis]. Melbourne: Department of Mechanical and Manufacturing Engineering, University of Melbourne. [152] Morris S C, Stolpa S R, Slaboch P E, Klewicki J C. 2007. Near-surface particle image velocimetry measurements in a transitionally rough-wall atmospheric boundary layer. Journal of Fluid Mechanics, 580:319-338. [153] Morrison J F, Mckeon B J, Jiang W, Smits A J. 2004. Scaling of the streamwise velocity component in turbulent pipe flow. Journal of Fluid Mechanics, 508:99-131. [154] Moser R D, Kim J, Mansour N N. 1999. Direct numerical simulation of turbulent channel flow up to $Re_ au=590$. Physics of Fluids, 11:943-945. [155] Nagib H M, Chauhan K A. 2008. Variations of von Kármán coefficient in canonical flows. Physics of Fluids, 20:101518. [156] Nagib H M, Chauhan K A, Monkewitz P A. 2007. Approach to an asymptotic state for zero pressure gradient turbulent boundary layers. Philosophical Transactions of the Royal Society A-Mathematical Physical And Engineering Sciences, 365:755-770. [157] Nickels T B, Marusic I, Hafez S, Hutchins N, Chong M S. 2007. Some predictions of the attached eddy model for a high Reynolds number boundary layer. Philosophical Transactions of the Royal Society A-Mathematical Physical And Engineering Sciences, 365:807-822. [158] Ninto Y, Garcia M H. 1996. Experiments on particle—turbulence interactions in the near-wall region of an open channel flow: Implications for sediment transport. Journal of Fluid Mechanics, 326:285-319. [159] Oertel H. 2005. Prandtl's Essntials of Fluid Mechanics. 2nd edn. Springer. [160] Offen G, Kline S. 1975. A proposed model of the bursting process in turbulent boundary layers. Journal of Fluid Mechanics, 70:209-228. [161] Orszag S A, Patterson G S. 1972. Numerical simulation of turbulence //M. Rosenblatt bt C. Van Atta eds.Statistical Models of' Ttirhulciice., New York: Springer. [162] ?sterlund J M, Johansson A V, Nagib H M, Hites M H. 2000. A note on the overlap region in turbulent boundary layers. Physics of Fluids, 12:1-4. [163] Owen P R. 1969. Pneumatic transport. Journal of Fluid Mechanics, 39:407-432. [164] Pan Y, Banerjee S. 1996. Numerical simulation of particle interactions with wall turbulence. Physics of Fluids, 8:2733-2755. [165] Panton R L. 2001. Overview of the self-sustaining mechanisms of wall turbulence. Progress in Aerospace Sciences, 37:341-383. [166] Pathikonda G, Christensen K T. 2017. Inner-outer interactions in a turbulent boundary layer overlying complex roughness. physical Review Fluids, 2:044603. [167] Perry A E, Henbest S, Chong M S. 1986. A theoretical and experimental study of wall turbulence. Journal of Fluid Mechanics, 165:163-199. [168] Porté Agel F. 2004. The role of coherent structures in subfilter-scale dissipation of turbulence measured in the atmospheric surface layer. Journal of Turbulence, 5:040. [169] Portela L M, Oliemans R V A. 2003. Eulerian-Lagrangian DNS/LES of particle-turbulence interactions in wall-bounded flows. International Journal for Numerical Methods in Fluids, 43:1045-1065. [170] Prandtl L. 1910. Eine Beziehung zwischen Warmeaustausch and Stromungswiderstand der Flussigkeiten. Phys. Z., 11:1072-1078. [171] Prandtl L. 1925. Bericht über Untersuchungen zur ausgebildeten Turbulenz. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 5:136-139. [172] Rashidi Mr, Hetsroni G, Banerjee S. 1990. Particle-turbulence interaction in a boundary layer. International Journal of Multiphase Flow, 16:935-949. [173] Rasmussen K R, S?rensen M. 1999. Aeolian mass transport near the saltation threshold. Earth Surface Processes and Landforms, 24:413-422. [174] Reichardt H. 1933. Die Quadratischen Mittelwerte der Lanesschwankungen in der Turbulenten Kanalstromung. Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM), 3:177-180. [175] Reynolds O. 1894. On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Philosophical Transactions of the Royal Society of London A, 186:123-164. [176] Richter D H, Sullivan P P. 2014. Modification of near-wall coherent structures by inertial particles. Physics of Fluids, 26:103304. [177] Righetti M, Giovanni P R. 2004. Particle-fluid interactions in a plane near-wall turbulent flow. Journal of Fluid Mechanics, 505:93-121. [178] Robinson S K. 1991. Coherent motions in the turbulent boundary layer. Annual Review of Fluid Mechanics, 23:601-639. [179] Rogers C B, Eaton J K. 1991. The effect of small particles on fluid turbulence in a flat-plate, turbulent boundary layer in air. Physics of Fluids A: Fluid Dynamics, 3:928-937. [180] Samie M, Marusic I, Hutchins N, Fu M K, Fan Y, Hultmark M, Smits A J. 2018. Fully resolved measurements of turbulent boundary layer flows up to $Re_ au=20000$. Journal of Fluid Mechanics, 851, 391-415. [181] Sato Y, Koichi H. 1996. Transport process of turbulence energy in particle-laden turbulent flow. International Journal of Heat and Fluid Flow, 17:202-210. [182] Schlatter P, ?rlü R. 2010. Quantifying the interaction between large and small scales in wall-bounded turbulent flows: A note of caution. Physicsof Fluids, 22:051704. [183] Schlichting H, Gersten K, Krause E, Oertel H J, Mayes C. 2000. Boundary Layer Theory. 8th edn. Springer. [184] Schultz M P, Flack K A. 2013. Reynolds-number scaling of turbulent channel flow. Physics of Fluids, 25:011702. [185] Serafimovich A, Thomas C, Foken T. 2011. Vertical and horizontal transport of energy and matter by coherent motions in a tall spruce canopy. Boundary-Layer Meteorology, 140:429-451. [186] Sillero J A, Jimenez J, Moser R D. 2013. One-point statistics for turbulent wall-bounded flows at Reynolds numbers up to $delta^{+}$ approximate to 2000. Physics of Fluids, 25:105102. [187] Sillero J A, Jimenez J, Moser R D. 2014. Two-point statistics for turbulent boundary layers and channels at Reynolds numbers up to $delta^{+}$ approximate to 2000. Physics of Fluids, 26:105109. [188] Smits A J, Mckeon B J, Marusic I. 2011. High-Reynolds number wall turbulence. Annual Review of Fluid Mechanics, 43:353-375. [189] Spalart P R. 1988. Vortex methods for separated flows// VKI, Computational Fluid Dynamics. [190] Squire D T, Baars W J, Hutchins N, Marusic I. 2016. Inner-outer interactions in rough-wall turbulence. Journal of Turbulence, 17:1159-1172. [191] Squire D T, Hutchins N, Morrill-Winter C, Schultz M P, Klewicki J C, Marusic I. 2017. Applicability of Taylor's hypothesis in rough and smooth-wall boundary layers. Journal of Fluid Mechanics, 812:398-417. [192] Stout J E, Zobeck T M. 1997. Intermittent saltation. Sedimentology, 44:959-970. [193] Talluru K M, Baidya R, Hutchins N, Marusic I. 2014. Amplitude modulation of all three velocity components in turbulent boundary layers. Journal of Fluid Mechanics, 746:R1. [194] Tanaka T, Eaton, J.K.. 2008. Classification of turbulence modification by dispersed spheres using a novel di-mensionless number. Physical Review Letters, 101:114502. [195] Tanaka T, Eaton J K. 2010. Sub-Kolmogorov resolution partical image velocimetry measurements of particle laden forced turbulence. Journal of Fluid Mechanics, 643:177-206. [196] Taniere A, Oesterle B, Monnier J C. 1997. On the behaviour of solid particles in a horizontal boundary layer with turbulence and saltation effects. Experiments in Fluids, 23:463-471. [197] Tay Godwin F K, Kuhn D C S, Tachie M F. 2015. Effects of sedimenting particles on the turbulence structure in a horizontal channel flow. Physics of Fluids, 27:025106. [198] Theodorsen T. 1952. Mechanism of turbulence// Proceedings of the Second Midwestern Conference on Fluid Mechanics. Ohio State University, USA. [199] Theodorsen T. 1955 The structure of turbulence// 50 Jahre Grenzschichtforschung. H. Gortler & W. Tollmien Vieweg and Sohn. pp52-56. [200] Tomkins C D. 1997. A partucle image velocimetry study of ciherent structures in a turbulent boundary layer. [PhD Thesis]. Urbana-Champaign: University of Illions. [201] Tomkins C D, Adrian R J. 2003. Spanwise structure and scale growth in turbulent boundary layers. Journal of Fluid Mechanics, 490:37-74. [202] Tritton D J. 1967. Some new correlation measurements in a turbulent boundary layer. Journal of Fluid Mechanics, 28:439-462. [203] Tsuji Y, Marusic I, Johansson A V. 2016. Amplitude modulation of pressure in turbulent boundary layer. International Journal of Heat And Fluid Flow, 61:2-11. [204] Tsuji Y, Morikawa Y. 1982. LDV measurements of an air-solid two-phase flow in a horizontal pipe. Journal of Fluid Mechanics, 120:385-409. [205] Tsuji Y, Morikawa Y, Shiomi H. 1984. LDV measurements of an air-solid two-phase flow in a vertical pipe. Journal of Fluid Mechanics, 139:417-434. [206] Vallikivi M, Hultmark M, Smits A J. 2015 a. Turbulent boundary layer statistics at very high Reynolds number. Journal of Fluid Mechanics, 779:371-389. [207] Vallikivi M, Ganapathisubramani B, Smits A J. 2015 b. Spectral scaling in boundary layers and pipes at very high Reynolds numbers. Journal of Fluid Mechanics, 771:303-326. [208] Varaksin A Y, Polezhaev Y V, Polyakov A F. 2000. Effect of particle concentration on fluctuating velocity of the disperse phase for turbulent pipe flow. International Journal of Heat and Fluid Flow, 21:562-567. [209] Vincenti P, Klewicki J, Morrill-Winter C, White C M, Wosnik M. 2013. Streamwise velocity statistics in turbulent boundary layers that spatially develop to high Reynolds number. Experiments in Fluids, 54:1629. [210] Von Kármán T. 1930. Mechanische ?nlichkeit und turbulenz. Nachrichten von der Gesellschaft der Wissenschaften zu G?ttingen, Mathematisch-Physikalische Klasse, 1930: 58-76. [211] Wang G, Zheng X. 2016. Very large scale motions in the atmospheric surface layer: A field investigation. Journal of Fluid Mechanics. 802:464-489. [212] Wang G, Zheng X, Tao J. 2017. Very large scale motions and PM10 concentration in a high-Re boundary layer. Physics of Fluids, 29:061701. [213] Wang P, Feng S, Zheng X, Sung H. 2019. The scale characteristics and formation mechanism of aeolian sand streamers based on large eddy simulation, Journal of Geophysical Research Atmosphere, 124:11372-11388. [214] Wang J, Levy E K. 2006. Particle behavior in the turbulent boundary layer of a dilute gas-particle flow past a flat plate. Experimental Thermal and Fluid Science, 30:473-483. [215] Wang Q, Squires K D. 1996. Large eddy simulation of particle-laden turbulent channel flow. Physics of Fluid, 8:1207-1223. [216] Wang W, Pan C, Wang J. 2018. Quasi-bivariate variational mode decomposition as a tool of scale analysis in wall-bounded turbulence. Experiments in Fluids, 59:1-18. [217] Wei T, Fife P, Klewicki J, Mcmurtry P. 2005. Properties of the mean momentum balance in turbulent boundary layer, pipe and channel flows. Journal of Fluid Mechanics, 522:303-327. [218] Willert C, Eisfelder M, Stanislas M, Klinner J, Talamelli A. 2017. Near-wall statistics of a turbulent pipe flow at shear Reynolds numbers up to 40000. Journal of Fluid Mechanics, 826:R5. [219] WMO. 1983. Guide to Meteorological Instruments and Methods of Observation. 5th edn. Geneva: The World Meteorological Organization. [220] Wu X, Moin P. 2009. Forest of hairpins in a low-Reynolds-number zero-pressure-gradient flat-plate boundary layer. Physics of Fluids, 21:091106. [221] Yamamoto Y, Tsuji Y. 2018. Numerical evidence of logarithmic regions in channel flow at $Re_ au= 8000$. Physical Review Fluids, 3:012602. [222] Yang H, Bo T. 2018. Scaling of wall-normal turbulence intensity and vertical eddy Structures in the atmospheric surface layer. Boundary-Layer Meteorology, 166:199-216. [223] Yang X, Sadique J, Mittal R, Meneveau C. 2015. Integral wall model for large eddy simulations of wall-bounded turbulent flows. Physics of Fluids, 27:025112. [224] Yao Y, Huang W, Xu C. 2018. Amplitude modulation and extreme events inturbulent channel flow. Acta Mechanica Sinica, 34:1-9. [225] Yin G, Huang W, Xu C. 2018. Prediction of near-wall turbulence using minimal flow unit. Journal of Fluid Mechanics, 841:654-673. [226] Zagarola M V, Smits A J. 1998. Mean-flow scaling of turbulent pipe flow. Journal of Fluid Mechanics, 373:33-79. [227] Zeng Q, Cheng X, Hu F, Peng Z. 2010. Gustiness and coherent structure of strong winds and their role in dust emission and entrainment. Advances in Atmospheric Sciences, 27:1-13. [228] Zhang W, Wang Y, Sang J L. 2008. Simultaneous PIV and PTV measurements of wind and sand particle velocities. Experiments in Fluids, 45:241-256. [229] Zhang Y, Hu R, Zheng X. 2018. Large-scale coherent structures of suspended dust concentration in the neutral atmospheric surface layer: A large-eddy simulation study. Physics of Fluids, 30:046601. [230] Zhao R, Smits A J. 2006. Binormal cooling errors in crossed hot-wire measurements. Experiments in Fluids, 40:212-217. [231] Zhao R, Smits A J. 2007. Scaling of the wall-normal turbulence component in high-Reynolds-number pipe flow. Journal of Fluid Mechanics, 576:457-473. [232] Zheng X. 2009. Mechanics of Wind-blown Sand Movements. Springer Science & Business Media. [233] Zheng X. 2018. Modulations of sand particles on VLSMs in sand-laden flows. JFM Symposia: From Fundamentals to Applied Fluid Mechanics. November 9-11, Beijing. [234] Zheng X, Jin T, Wang P. 2020. The influence of surface stress fluctuation on saltation sand transport around threshold. Journal of Geophysical Research: Earth Surface, 125: e2019JF005246. [235] Zheng X, Wang G, Bo T, Zhu W. 2015. Field observations on the turbulent features of the near-surface flow fields and dust transport during dust storms. Procedia IUTAM, 17:13-19. [236] Zheng X, Zhang J, Wang G, Liu H, Zhu W. 2013. Investigation on very large scale motions (VLSMs) and their influence in a dust storm. Science China (Physics, Mechanics & Astronomy), 56:306-314.
点击查看大图
计量
- 文章访问数:3031
- HTML全文浏览量:650
- PDF下载量:1022
- 被引次数:0