-
摘要:斜爆轰是气相爆轰物理的一个重要研究方向,在航空航天新型动力领域有重要的潜在应用价值.作为激波诱导的高速燃烧, 斜爆轰波可以简化为包含能量添加的间断面.然而, 斜爆轰流动中往往涉及激波、湍流等多种的流体力学现象,它们和燃烧放热耦合在一起, 导致流动和燃烧机理非常复杂. 一方面,斜爆轰波具有的多尺度和非线性的特征, 理论研究难以深入; 另一方面,爆轰波流场高温、高压、高速的特点, 又给实验研究带来了很大的困难.过去20年, 主要借助数值方法,研究者对斜爆轰波开展了系统的模拟和分析,在诸多方面取得了明显的进展.本文首先介绍了理想情况下的起爆区波系结构和波面稳定性研究进展;其次着眼于推进系统的问题,关注了非均匀来流效应以及斜爆轰波与稀疏波的作用;最后对未来的研究工作提出一些建议.Abstract:Oblique detonation is an important direction in gaseous detonation physics and has great potential in the application of new-concept aeronautic and astronautic propulsion. As the fast combustion induced by shock, the oblique detonation wave could be simplified into a discontinuity with energy input. However, in oblique detonation flow, there concern several complicated fluid phenomena, such as shock wave and turbulence, which are coupled with the heat release and result in complicated flow and combustion mechanisms. A theoretical investigation is hard to be performed due to the characteristics of multi-scale and nonlinearity. Meanwhile, experimental investigation encounters the difficulties from measuring the flow fields of high temperature, high pressure, and high velocity. In the last two decades, the main progress of oblique detonation is achieved by numerical investigation through comprehensive simulation and analysis. First of all, the multi-wave structure of the initiation region and surface stability are introduced in the ideal inflow conditions. Then, derived from the application in engines, the effects of inflow inhomogeneity and interaction with expansion waves are studied and analyzed. Finally, some suggestions on future work are proposed and discussed.
-
Key words:
- oblique detonation/
- shock/
- deflagration/
- initiation/
- stability
-
[1] 范宝春, 张旭东, 潘振华, 归明月 . 2012. 用于推进的三种爆震波的结构特征. 力学进展, 42:162-169(Fan B C, Zhang X D, Pan Z H, Gui M Y . 2012. Fundamental characteristics of three types of detonation waves utilized in propulsion. Advances in Mechanics, 42: 162-169). [2] 范宝春 . 2018. 极度燃烧. 北京: 国防工业出版社(Fan B C. 2018. Extreme Combustion. Beijing: National Defense Industry Press). [3] 范玮, 李建玲 , 等. 2014. 爆震组合循环发动机研究导论. 北京: 科学出版社(Fan W, Li J L , et al. 2014. . Induction to A Combined Cycle Engine Based Detonation Combustion. Beijing: Science Press). [4] 方宜申, 胡宗民, 滕宏辉, 姜宗林 . 2017. 圆球诱发斜爆轰波的数值研究. 力学学报, 49:268-273(Fang Y S, Hu Z M, Teng H H, Jiang Z L . 2017. Numerical study of the oblique detonation initiation induced by spheres. Chinese Journal of Theoretical and Applied Mechanics, 49: 268-273). [5] 苗世坤, 周进, 刘彧, 刘世杰, 林志勇 . 2019. 超声速气流中的斜爆震研究进展综述. 实验流体力学, 33:41-53(Miao S K, Zhou J, Liu Y, Liu S J, Lin Z Y . 2019. Review of studies on oblique detonation waves in supersonic flows. Journal of Experiments in Fluid Mechanics, 33: 41-53). [6] 童秉纲, 孔祥言, 邓国华 . 1996. 气体动力学. 北京: 高等教育出版社(Tong B G, Kong X Y, Deng G H. 1996. Gasdynamics. Beijing: Higher Education Press). [7] 王家骅, 韩启祥 . 2013. 脉冲爆震发动机技术. 北京: 国防工业出版社(Wang J H, Han Q X. 2013. Pulse Detonation Engine. Beijing: National Defense Industry Press). [8] 王健平, 姚松柏 . 2018. 连续爆轰发动机原理与技术. 北京: 科学出版社(Wang J P, Yao S B. 2018. Principles and Techniques of Continuous Detonation Engine. Beijing: Science Press). [9] 严传俊, 范玮 , 等. 2005. 脉冲爆震发动机原理及关键技术. 西安: 西北工业大学出版社(Yan C J, Fan W , et al. 2005. Principles and Key Techniques of Pulse Detonation Engine. Xi'an: Northwestern Polytechnical University Press). [10] 袁生学, 赵伟, 黄志澄 . 2000. 驻定斜爆轰波的初步实验观察. 空气动力学学报, 18:473-477(Yuan S X, Zhao W, Huang Z C . 2000. Primary experimental observation of standing oblique detonation waves. Acta Aerodynamica Sinica, 18: 473-477). [11] Alexander D C, Sislian J P, Parent B. 2006. Hypervelocity fuel/air mixing in mixed-compression inlets of shcramjets. AIAA Journal, 44:2145-2155. [12] Ashford S A, Emanuel G. 1994. Wave angle for oblique detonation waves. Shock Waves, 3:327-329. [13] Bertin J J, Cummings R M. 2003. Fifty years of hypersonics: Where we've been, where we're going. Progress in Aerospace Sciences, 39: 511-536. [14] Bhattrai S, Tang H. 2017. Formation of near-Chapman-Jouguet oblique detonation wave over a dual-angle ramp. Aerospace Science and Technology, 63:1-8. [15] Bomjan B, Bhattrai S, Tang H. 2018. Characterization of induction and transition methods of oblique detonation waves over dual-angle wedge. Aerospace Science and Technology, 82-83:394-401. [16] Bourlioux A, Majda A, Roytburd V. 1991. Theoretical and numerical structure for unstable one-dimensional detonations. SIAM Journal on Applied Mathematics, 51:303-343. [17] Bourlioux A, Majda A J. 1992. Theoretical and numerical structure for unstable two-dimensional detonations. Combustion and Flame, 90:211-229. [18] Braun E M, Lu F K, Wilson D R, Camberos J A. 2013. Airbreathing rotating detonation wave engine cycle analysis. Aerospace Science and Technology, 27:201-208. [19] Cai X, Liang J, Deiterding R, Mahmoudi Y, Sun M. 2018. Experimental and numerical investigations on propagating modes of detonations: Detonation wave/boundary layer interaction. Combustion and Flame, 190:201-215. [20] Cambier J L, Adelman H, Menees G P. 1990. Numerical simulations of an oblique detonation wave engine. Journal of Propulsion and Power, 6:315-323. [21] Choi J Y, Kim D W, Jeung I S, Ma F, Yang V. 2007. Cell-like structure of unstable oblique detonation wave from high-resolution numerical simulation. Proceedings of the Combustion Institute, 31:2473-2480. [22] Choi J Y, Shin E J R, Jeung I S. 2009. Unstable combustion induced by oblique shock waves at the non-attaching condition of the oblique detonation wave. Proceedings of the Combustion Institute, 32:2387-2396. [23] Ciccarelli G, Dorofeev S. 2008. Flame acceleration and transition to detonation in ducts. Progress in Energy and Combustion Science, 34:499-550. [24] Curran E T, Heiser W H, Pratt D T. 1996. Fluid phenomena in scramjet combustion systems. Annual Review of Fluid Mechanics, 28:323-360. [25] Dabora E K, Broda J C. 1993. Standing normal detonations and oblique detonations for propulsion. AIAA Paper: AIAA-93-2325. [26] Emanuel G, Tuckness D G. 2004. Steady, oblique, detonation waves. Shock Waves, 13:327-329. [27] Fang Y, Hu Z, Teng H. 2018. Numerical investigation of oblique detonations induced by a finite wedge in a stoichiometric hydrogen-air mixture. Fuel, 234:502-507. [28] Fang Y, Hu Z, Teng H, Jiang Z, Ng H D. 2017. Numerical study of inflow equivalence ratio inhomogeneity on oblique detonation formation in hydrogen-air mixtures. Aerospace Science and Technology, 71:256-263. [29] Fang Y, Zhang Y, Deng X, Teng H. 2019. Structure of wedge-induced oblique detonation in acetylene-oxygen-argon mixtures. Physics of Fluids, 31:026108. [30] Fickett W, Davis W C. 2000. Detonation: Theory and Experiment. New Tork: Dover Publications. [31] Figueria da Silva L F, Deshaies B. 2000. Stabilization of an oblique detonation wave by a wedge: A parametric numerical study. Combustion and Flame, 121:152-166. [32] Fusina G, Sislian J P, Parent B. 2005. Formation and stability of near Chapman-Jouguet standing oblique detonation waves. AIAA Journal, 43:1591-1604. [33] Gamezo V N, Desbordes D, Oran E S. 1999 a. Formation and evolution of two-dimensional cellular detonations. Combustion and Flame, 116:154-165. [34] Gamezo V N, Desbordes D, Oran E S. 1999 b. Two-dimensional reactive flow dynamics in cellular detonation waves. Shock Waves, 9:11-17. [35] Grismer M J, Powers J M. 1996. Numerical predictions of oblique detonation stability boundaries. Shock Waves, 6:147-156. [36] Gui M Y, Fan B C, Dong G. 2011. Periodic oscillation and fine structure of wedge-induced oblique detonation waves. Acta Mechanica Sinica, 27:922-928. [37] Han W, Wang C, Law C K. 2019. Three-dimensional simulation of oblique detonation waves attached to cone. Physical Review Fluids, 4:053201. [38] He L, Lee J H S. 1995. The dynamical limit of one-dimensional detonations. Physics of Fluids, 7:1151-1158. [39] Higgins A J. 2006. Ram accelerators: Outstanding issues and new directions. Journal of Propulsion and Power, 22:1170-1187. [40] Iwata K, Nakaya S, Tsue M. 2016. Numerical investigation of the effects of nonuniform premixing on shock-induced combustion. AIAA Journal, 54:1682-1692. [41] Iwata K, Nakaya S, Tsue M. 2017. Wedge-stabilized oblique detonation in an inhomogeneous hydrogen-air mixture. Proceedings of the Combustion Institute, 36:2761-2769. [42] Kailasanath K. 2003. Recent developments in the research on pulse detonation engines. AIAA Journal, 41:145-159. [43] Kaneshige M J, Shepherd J E. 1996. Oblique detonation stabilized on a hypervelocity projectile. Symposium (International) on Combustion, 26:3015-3022. [44] Lee J H S. 1984. Dynamic parameters of gaseous detonations. Annual Review of Fluid Mechanics, 16:311-336. [45] Lee J H S. 2008. The Detonation Phenomenon. Cambridge: Cambridge University Press. [46] Lehr H F. 1972. Experiments on shock-induced combustion. Astronautica Acta, 17:589-597. [47] Li C, Kailasanath K, Oran E. 1993. Effects of boundary layers on oblique-detonation structures. AIAA Paper: AIAA-93-0450. [48] Li C, Kailasanath K, Oran E S. 1994. Detonation structures behind oblique shocks. Physics of Fluids, 6:1600-1611. [49] Liu Y, Han X, Yao S, Wang J. 2016 a. A numerical investigation of the prompt oblique detonation wave sustained by a finite-length wedge. Shock Waves, 26:729-739. [50] Liu Y, Liu Y S, Wu D, Wang J P. 2016 b. Structure of an oblique detonation wave induced by a wedge. Shock Waves, 26:161-168. [51] Liu Y, Wang L, Xiao B, Yan Z, Wang C. 2018. Hysteresis phenomenon of the oblique detonation wave. Combustion and Flame, 192:170-179. [52] Maeda S, Inada R, Kasahara J, Matsuo A. 2011. Visualization of the non-steady state oblique detonation wave phenomena around hypersonic spherical projectile. Proceedings of the Combustion Institute, 33:2343-2349. [53] Maeda S, Kasahara J, Matsuo A. 2012. Oblique detonation wave stability around a spherical projectile by a high time resolution optical observation. Combustion and Flame, 159:887-896. [54] Maeda S, Sumiya S, Kasahara J, Matsuo A. 2013. Initiation and sustaining mechanisms of stabilized oblique detonation waves around projectiles. Proceedings of the Combustion Institute, 34:1973-1980. [55] Menees G P, Adelman H G, Cambier J L, Bowles J V. 1992. Wave combustors for trans-atmospheric vehicles. Journal of Propulsion and Power, 8:709-713. [56] Nettleton M A. 2000. The applications of unsteady, multi-dimensional studies of detonation waves to ram accelerators. Shock Waves, 10:9-22. [57] Ng H D, Lee J H S. 2003. Direct initiation of detonation with a multi-step reaction scheme. Journal of Fluid Mechanics, 476:179-211. [58] Papalexandris M V. 2000. A numerical study of wedge-induced detonations. Combustion and Flame, 120:526-538. [59] Pratt D T, Humphrey J W, Glenn D E. 1991. Morphology of standing oblique detonation waves. Journal of Propulsion and Power, 7:837-845. [60] Qin Q, Zhang X. 2018. A novel method for trigger location control of the oblique detonation wave by a modified wedge. Combustion and Flame, 197:65-77. [61] Ren Z, Wang B, Xiang G, Zheng L. 2018. Effect of the multiphase composition in a premixed fuel-air stream on wedge-induced oblique detonation stabilisation. Journal of Fluid Mechanics, 846:411-427. [62] Ren Z, Wang B, Xiang G, Zheng L. 2019. Numerical analysis of wedge-induced oblique detonations in two-phase kerosene-air mixtures. Proceedings of the Combustion Institute, 37:3627-3635. [63] Roy G D, Frolov S M, Borisov A A, Netzer D W. 2004. Pulse detonation propulsion: Challenges, current status, and future perspective. Progress in Energy and Combustion Science, 30:545-672. [64] Rubins P M, Bauer R C. 1994. Review of shock-induced supersonic combustion research and hypersonic applications. Journal of Propulsion and Power, 10:593-601. [65] Sharpe G J, Radulescu M I. 2011. Statistical analysis of cellular detonation dynamics from numerical simulations: One-step chemistry. Combustion Theory and Modelling, 15:691-723. [66] Short M, Quirk J J. 1997. On the nonlinear stability and detonability limit of a detonation wave for a model three-step chain-branching reaction. Journal of Fluid Mechanics, 339:89-119. [67] Sislian J P, Dudebout R, Schumacher J, Islam M, Redford T. 2000. Incomplete mixing and off-design effects on shock-induced combustion ramjet performance. Journal of Propulsion and Power, 16:41-48. [68] Sislian J P, Schirmer H, Dudebout R, Schumacher J. 2001. Propulsive performance of hypersonic oblique detonation wave and shock-induced combustion ramjets. Journal of Propulsion and Power, 17:599-604. [69] Teng H, Ng H D, Jiang Z. 2017. Initiation characteristics of wedge-induced oblique detonation waves in a stoichiometric hydrogen-air mixture. Proceedings of the Combustion Institute, 36:2735-2742. [70] Teng H, Ng H D, Li K, Luo C, Jiang Z. 2015. Evolution of cellular structures on oblique detonation surfaces. Combustion and Flame, 162:470-477. [71] Teng H, Zhang Y, Jiang Z. 2014 a. Numerical investigation on the induction zone structure of the oblique detonation waves. Computers & Fluids, 95:127-131. [72] Teng H H, Jiang Z L. 2012. On the transition pattern of the oblique detonation structure. Journal of Fluid Mechanics, 713:659-669. [73] Teng H H, Jiang Z L, Ng H D. 2014 b. Numerical study on unstable surfaces of oblique detonations. Journal of Fluid Mechanics, 744:111-128. [74] Tian C, Teng H, Ng H D. 2019. Numerical investigation of oblique detonation structure in hydrogen-oxygen mixtures with Ar dilution. Fuel, 252:496-503. [75] Urzay J. 2018. Supersonic combustion in air-breathing propulsion systems for hypersonic flight. Annual Review of Fluid Mechanics, 50:593-627. [76] Verreault J, Higgins A J. 2011. Initiation of detonation by conical projectiles. Proceedings of the Combustion Institute, 33:2311-2318. [77] Verreault J, Higgins A J, Stowe R A. 2012. Formation and structure of steady oblique and conical detonation waves. AIAA Journal, 50:1766-1772. [78] Verreault J, Higgins A J, Stowe R A. 2013. Formation of transverse waves in oblique detonations. Proceedings of the Combustion Institute, 34:1913-1920. [79] Viguier C, Figueira da Silva L F, Desbordes D, Deshaies B. 1996. Onset of oblique detonation waves: Comparison between experimental and numerical results for hydrogen-air mixtures. Symposium (International) on Combustion, 26:3023-3031. [80] Vlasenko V V, Sabel'nikov V A. 1995. Numerical simulation of inviscid flows with hydrogen combustion behind shock waves and in detonation waves. Combustion, Explosion and Shock Waves, 31:376-389. [81] Wang T, Zhang Y, Teng H, Jiang Z, Hg H D. 2015. Numerical study of oblique detonation wave initiation in a stoichiometric hydrogen-air mixture. Physics of Fluids, 27:096101. [82] Wolański P. 2013. Detonative propulsion. Proceedings of the Combustion Institute, 34:125-158. [83] Yang P, Ng H D, Teng H, Jiang Z. 2017. Initiation structure of oblique detonation waves behind conical shocks. Physics of Fluids, 29:086104. [84] Yang P, Teng H, Jiang Z, Ng H D. 2018. Effects of inflow Mach number on oblique detonation initiation with a two-step induction-reaction kinetic model. Combustion and Flame, 193:246-256. [85] Yang P, Teng H, Ng H D, Jiang Z. 2019. A numerical study on the instability of oblique detonation waves with a two-step induction-reaction kinetic model. Proceedings of the Combustion Institute, 37:3537-3544. [86] Zhang Y, Fang Y, Ng H D, Teng H. 2019. Numerical investigation on the initiation of oblique detonation waves in stoichiometric acetylene-oxygen mixtures with high argon dilution. Combustion and Flame, 204:391-396. [87] Zhang Y, Gong J, Wang T. 2016. Numerical study on initiation of oblique detonations in hydrogen-air mixtures with various equivalence ratios. Aerospace Science and Technology, 49:130-134. [88] Zhang Y, Yang P, Teng H, Ng H D, Wen C. 2018 a. Transition between different initiation structures of wedge-induced oblique detonations. AIAA Journal, 56:4016-4023. [89] Zhang Y, Zhou L, Gong J, Ng H D, Teng H. 2018 b. Effects of activation energy on the instability of oblique detonation surfaces with a one-step chemistry model. Physics of Fluids, 30:106110.
点击查看大图
计量
- 文章访问数:2264
- HTML全文浏览量:485
- PDF下载量:330
- 被引次数:0